
WHY DAML 1

Why Daml?
Introduction
Daml is a development framework for creating systems of

record that securely connect across business processes and data

boundaries while retaining privacy, guaranteeing data integrity,

and enforcing strict authorization. Allowing such systems to

cross boundaries — legal, regulatory, organizational, or other —

enables them to form seamless economic networks.

Daml’s core idea is to abstract the key concepts of blockchains

that allow them to provide consistency guarantees on distributed

systems of record. Daml, a virtual shared ledger, governed by

smart contracts, takes the place of a concrete blockchain.

Adding this layer of abstraction allows Daml to realize a whole

range of capabilities and advantages that are sorely lacking in

individual blockchain and distributed ledger technologies.

Most importantly, it decouples applications from underlying

storage and consensus, making Daml applications portable

and enabling unprecedented privacy and interoperability

without trading off consistency. The way Daml abstracts away

the underlying blockchain, distributed ledger, or database to

expose a virtual shared ledger is analogous to how high-level

programming languages abstracted away microprocessor

architectures in favor of memory and logic abstractions in

the 60s and 70s, or how SQL and ODBC/JDBC abstracted

away relational database systems to popularize the CRUD

model in the 90s. In the same way, these past developments

revolutionized how we built applications for mainframes and

the web. Daml aims to revolutionize how we build applications

across entities or other boundaries.

One of the reasons abstraction layers drive innovation is

that they move the focus from the deployment target to the

application that runs on top. Developers are exposed to less

complexity and can focus on solving business rather than

technical problems. Daml fully embraces this. Its purpose-built

smart contract language provides the primitives to safely and

easily express complex business logic with its associated privacy

Daml’s core idea is to abstract the
key concepts of blockchains that
allow them to provide consistency
guarantees on distributed systems
of record.

and authorization concerns. On top of that, an entire application

stack allows developers to integrate Daml applications into holistic

enterprise solutions and existing systems.

 The combination of portability, unmatched capabilities, and

ease of development simultaneously future-proofs investment,

opens up new use cases, and de-risks projects. In what

follows we will describe in more detail some key issues facing

enterprise blockchain projects, how Daml delivers the benefits

described above, and how it compares to other solutions in key

areas like application development, deployment, privacy, and

interoperability.

Distributed Ledgers for
Enterprise
Blockchains solve one of the fundamental problems facing every

distributed application: How do you provide every node in the

network a consistent shared state?

The importance of this is illustrated by the double-spend problem

in the use case of digital money. Alice has $100, and both Bob

and Carol sell bikes for $100. Alice may try, maliciously or by error,

to spend her $100 twice to buy both bikes. Consistency means

that the entire network comes to the same conclusion on who

owns the $100 when Alice does so.

WHY DAML 2

Before blockchains, this was solved almost universally by a

combination of three mechanisms:

1. �Centralized “master” record of the state of the system.

E.g., the land registry of a country, or bank accounts.

2. �Processes to consistently update two or more such

“master” records at the same time. E.g., a transfer

from an account at one bank to an account at another

bank.

3. �Reconciliation processes to detect and correct

inconsistencies due to implementation errors of the

prior two mechanisms.

The complexity of the processes in point 2 and the associated

reconciliation in point 3 make such systems slow and expensive

to run, which translates directly into significant costs for

businesses. The guaranteed system consistency offered by

distributed ledgers offers significant savings and speed-up of

business processes.

In their original design, blockchains are public and

permissionless, meaning anyone can connect to them, everyone

can see all data, and all participants are equal. None of

these properties are suitable for the majority of enterprise

applications, so systems geared towards enterprise and offering

different degrees of privacy and permissioning have emerged.

They employ a spectrum of different approaches to application

development, privacy, and interoperability. However, all current

major blockchain and distributed ledger technology (DLT)

platforms fall short in several areas:

• Programming these systems is difficult and error-prone.

• �There is insufficient support for integrating blockchain

applications into full solutions.

• �Even to start developing an application, one needs

to commit to a single deployment target, resulting in

applications that are then tied to that target.

• �Heavy trade-offs between privacy, security, and

consistency are required. These trade-offs are often

implicit and are not clear to the developer who needs to

make them.

• �Interoperability relies on standardizing on a single

blockchain or distributed ledger technology or requires

careful planning and application development.

Daml solves these as well as other problems within the

enterprise blockchain space. Let’s now take a deeper look at

Daml.

An Overview of Daml
The open source Daml smart contract language, described in

more detail below under “Daml Smart Contracts,” forms the

core of the Daml application stack. The language is a purpose-

built Domain Specific Language (DSL) designed to encode the

shared business logic of the application. It provides developers

primitives to safely and succinctly describe core concerns like

data types, privacy, and authorization rules without concerning

themselves with the ultimate deployment target. In terms of the

virtual shared ledger, it expresses who may write what events,

and to whom they are distributed.

Daml abstracts the event sourcing model employed by

blockchains and distributed ledgers. Event sourcing means

that the current state of the system can be computed from the

log of past events. Instead of keeping a global event log, Daml

provides each stakeholder a consistent view on a virtual shared

event log, called the virtual shared ledger, while distributing

data on a strict need-to-know basis under the hood. This

creates a system in which each participant has a consistent

WHY DAML 3

view of the (virtual) global system state, consisting of exactly

the data they are entitled to. The virtual shared ledger is

described in Daml’s Ledger Model and implemented in the Daml

smart contract language and associated Ledger API.

The Ledger API is the primary API to interact with Daml

smart contracts and the virtual shared ledger. It is a high-

performance reactive gRPC-based streaming API. It allows

applications to subscribe to events that they are permissioned

to view, get their current state, or submit commands to write

new events. As such, the Ledger API and smart contracts are the

primary mechanisms for abstracting away concrete blockchains

or databases to instead develop against a virtual shared ledger.

Any node in a network that exposes Daml’s Ledger API—and

thus gives access to the shared ledgers—is called a participant

node as it allows participation in the network.

To enable an infrastructure like a blockchain or database to

run Daml applications, it needs a Daml Driver that allows

a matching participant node to connect into the network.

Daml Drivers do not store any data and are typically deployed

per node of the underlying blockchain or database. There are

already numerous drivers, both open source and commercial,

available in the Daml ecosystem, with more under development.

See daml.com for an overview.

The deployed Daml smart contracts as well as everything on

top of the Ledger API are considered part of a Daml application.

Daml is a suite of tools that assists in the development of full-

stack Daml applications. Daml contains an SDK that includes an

Integrated Development Environment (IDE) for smart contract

development, a suite of runtime components, and integration

libraries spanning all the way to user interfaces.

With this picture in mind, we can take a look at how Daml is

able to provide substantial benefits over bare-bones distributed

ledgers.

Programing Enterprise
Blockchains
All blockchain systems are based on an immutable and

verifiable log of transactions. The state of an application is

computed from that transaction log. Where blockchain systems

differ profoundly from each other is in what transactions and

resulting state look like, as well as in how client applications

interact with the ledger. The three most prevalent approaches

are the following:

Consensus-only solutions like Hyperledger Fabric, Hyperledger

Sawtooth, and Tendermint have low-level APIs that allow external

processes or modules to submit and validate transactions. Other

than metadata needed for the consensus algorithm, transactions

are opaque blobs. That means both the shape of transactions

and the resulting state are left to the developer.

In Unspent Transaction Output (UTXO) solutions like R3’s Corda,

state and transactions have a prescribed format, which user

WHY DAML 4

code has to construct and validate. Validation is done using an

inbuilt virtual machine.

Ethereum derivatives like Hyperledger Besu and Quorum have

a state consisting of global, replicated state machines with

transactions consisting of method calls on those state machines.

Building applications directly against the low-level API of

consensus-only solutions or using the inbuilt transaction and

validation mechanisms of a UTXO solution ties an application

irrevocably to the underlying blockchain. It also means that

languages and tools designed for traditional application

development have to be adapted to fit the requirements and

programming paradigms of distributed ledgers. This requires

great skill and care by developers and a deep understanding of

the underlying blockchain or ledger technology.

A further problem with the consensus-only or UTXO models

is that transaction validation has to be deterministic to avoid

inconsistencies (forks). Accomplishing this is possible in one

of three ways: Use a custom language and VM for validation,

like Bitcoin Script, compile a common language like C++ to a

deterministic bytecode like WASM, or modify an existing VM

like the JVM to be deterministic. All three approaches have

the problem that transaction construction and validation use

different code-paths, putting the burden on the developer to

ensure that only correct transactions get constructed. This is

made more difficult if the two use different languages.

For that reason, smart contract development in the style

of Ethereum has proven itself to be the winning model for

application development on blockchains, but Solidity, Ethereum’s

de facto smart contract language, is deeply tied to the

mechanics of the Ethereum blockchain. Furthermore, the model

of transacting via method calls to globally replicated state

machines has known issues with security, privacy, and scalability.

Daml Smart Contracts
Daml contracts take the best parts of the UTXO model,

Ethereum-style smart contract model, as well as typesafe

and pure general-purpose languages and combine them into

a unique blend of usability and safety suitable for the task of

creating critical and complex applications.

The interaction with Daml contracts is similar to interaction

with Ethereum-style smart contracts in that each active

contract on the ledger gives rise to a number of choices that

look and feel a bit like methods on an object. As a result,

transaction construction and validation use the same code,

and Daml inherits the familiarity and scalability of the smart

contract model.

Rather than being globally replicated state machines, each

contract is entirely immutable, meaning these choices can

only archive existing contracts or create new ones, giving

the safety and simplicity of UTXO models. Security issues like

reentrancy bugs or unexpected results due to race conditions

are eliminated. Daml ledgers inherit the simple-to-understand

notion of state from UTXO ledgers: The current state of the

application is simply the set of currently active contracts.

In addition, Daml is unique in that it exchanges ledger

native concepts like addresses, cryptographic signatures,

transactions, and similar with high-level concepts that matter

to applications: Data ownership, visibility, permissions, write

authorization, and the like. This allows for seamless extensibility

and upgradability of contracts without any special planning or

processes beyond usual application development.

Building applications directly against
the low-level API of consensus-
only solutions or using the inbuilt
transaction and validation
mechanisms of a UTXO solution ties
an application irrevocably to the
underlying blockchain.

WHY DAML 5

Building Client Applications
Smart contracts running on a blockchain or database are only

the very core of a full smart contract-based solution, and the

majority of work in any project tends to be the integration. Thus,

suitable APIs, integration components, and libraries are key to

any successful project.

None of the major enterprise blockchains have a coherent

application stack beyond exposing low-level functionality

in a small number of languages or using a proprietary API.

As a result, the application developer is forced into using

the language environment chosen by the developers of the

blockchain and must build their application in that environment

from low-level APIs and a mix of inconsistent tools and libraries.

For example:

• �Fabric chain code is supported in JavaScript and Java

only, and the developer has to program directly against

the low-level chain code API.

• �In Tendermint, the developer can choose between using

the even more low-level ABCI interface to build an

application using the language of their choice or going

with Cosmos to get something slightly higher-level but

then be locked into using Go.

• �In Corda, everything, including the RPC client, is tied

to the Java (or rather JVM) ecosystem and boils down

to exposing ledger functionality in Java rather than

integration with wider solutions.

Ethereum has by far the richest ecosystem of tooling, but it is

piecemeal and primarily geared towards development against

the public main net.

Daml Tooling
Daml follows the philosophy that a smart-contract based

solution should embed smoothly into any enterprise context

rather than force the developer to adapt their tech stack to the

chosen blockchain or database. However, the solution should

also support the developer across the entire application stack

to enable rapid prototyping and go-to-market. Supporting an

entire application stack in every language and framework is not

feasible, which is why Daml follows a layered approach.

Daml provides a single coherent stack of APIs, components, and

libraries that covers the entire integration space all the way

to and including UIs. Within that stack are several stable and

broadly supported APIs that allow developers to branch off into

their own languages or frameworks with ease. The different

components and layers of Daml communicate only through

these public APIs, which means any functionality provided by

a Daml component is also supported by the public APIs of the

next-lower-level layer of the stack.

To make this flexible and modular architecture work in as many

contexts as possible, Digital Asset chose the most broadly used

and accessible technologies, standards, or frameworks fit for

their respective purpose: gRPC for high performance streaming,

HTTP/JSON/WebSockets for high-level APIs, Java and

DAML DRIVERS

Runtime APIs

Ledger API

Java/JS APIs

CLIENT LIBRARIES

GENERATED CODE

RUNTIME COMPONENTS

USER CODE

DEVELOPER
TOOLS

WHY DAML 6

Testability And Deployability
To test or deploy an application built natively for a blockchain,

you need to spin up an entire enterprise-grade network. That

tends to be an expensive and complex undertaking affecting

both the development process as well as the cost of deploying

pilots. Frameworks like Hyperledger’s Blockchain Automation

Framework or blockchain-as-a-service platforms can help

with this to a limited extent, but do not come close to the

development and deployment experiences of general-purpose

application frameworks or platforms.

Tools like Truffle Ganache, a small in-memory implementation

of Ethereum, smooth the development process somewhat as

they allow developers to spin up an ephemeral deployment

target quickly on their local machine or in Continuous

Integration (CI). But Ganache simulates the Ethereum main

net and is thus not entirely suitable for testing enterprise

applications.

Because Daml is not tied to any particular deployment target,

it can take both local development ledgers and easy service-

based deployment targets to the next level. Daml is able to

evaluate smart contract code in real time in the IDE, giving

immediate feedback to developers and enabling fast test-driven

development practices. It is able to provide not only a local test

ledger but to spin up an entire application platform including all

Daml components on the developer’s machine.

When it comes to deploying a production system, the

deployment target can be chosen to suit the application, with

options ranging from managed PaaS solutions like project:DABL,

via blockchain- or database-as-a-service offerings to on-

premise solutions. Many Daml Drivers can even be deployed to

already running blockchains or databases.

Once a target deployment environment is chosen, tests that

were run by the developer and CI can be rerun against a

production-like test or staging environment.

Privacy
All of today’s blockchains require users to make heavy trade-offs

between consistency and privacy. Simply put, each deployment

can choose strong privacy or strong consistency, but not both at

the same time.

Fabric, Besu, and Quorum allow transactions to be made

between restricted sets of parties via private transaction

managers, but those sets can never change. An agreement

private to Alice and Bob cannot be used in a transaction

involving Alice, Bob, and Carol. The only exception to that is that

private transactions may read public information.

• �To transact safely amongst a group using the inbuilt

consistency mechanisms, all involved parties see all

involved data.

• �To get better privacy, data needs to be transferred from

one set of parties to another using off-ledger processes.

Developers need to ensure consistency themselves.

WHY DAML 7

In Corda, transactions are only seen by those parties that

are involved in that transaction. However, every transaction

includes the full history of its input contracts. So if Alice issues

a token to Bob, Bob transfers it to Carol, and Carol transfers it

to Duncan, Duncan sees the entire chain Alice -> Bob -> Carol

-> Duncan. The common workaround — reissuance after every

transfer — compromises consistency. Furthermore, networks

need to make a choice between validating and non-validating

notaries. Validating notaries see everything, thus achieving

consistency by forgoing privacy. Non-validating nodes preserve

privacy, but are open to so-called Denial of State attacks, which

can be used to maliciously lock up applications.

Subtransaction Privacy
In Daml
Daml’s privacy model is considerably more granular than either

the “channel” model of Fabric and Enterprise Ethereum or

Corda’s transaction privacy. Daml transactions are composed

of subtransactions and every subtransaction has its own set

of witnesses that are entitled to see that part of the overall

picture. For example, if Alice and Bob want to swap $100 at a

Bank for a Widget at a Factory, they can do so atomically with

the Bank only seeing the cash transfer and the Factory only

seeing the transfer of the Widget. The set of witnesses depends

only on the current transaction, not on ledger history, making

this model predictable and safe to work with. This privacy is

provided by data minimization, sending only those parts of a

transaction to a participant node that it is entitled to see.

This strong privacy comes without any trade-off on consistency.

The witnesses of Daml transactions are computed to ensure

that all relevant parties can validate enough of every

transaction to guarantee ledger integrity.

The full Daml privacy model is provided in all integrations

from the point of view of consumers of the Ledger API. The

degree to which privacy can be upheld against operators

of infrastructure nodes or Daml Drivers depends on the

capabilities of the underlying ledger. When an underlying

system cannot support Daml’s full privacy model, Daml

makes this choice explicit, enabling security teams to make

an apples-to-apples comparison of the security attributes of

the different blockchains. In many cases, using a combination

of data minimization and cryptography, Daml can achieve

better privacy than the deployment target can offer natively,

without impacting integrity. Naturally, if Daml is deployed to

a centralized SQL database, the database operator will have

access to at least encrypted versions of the transactions. But

thanks to the portability of Daml applications and the wealth of

integrations available, suitable Daml Drivers exist to uphold full

privacy in almost all trust contexts.

WHY DAML 8

Interoperability
The blockchain vision is one of a seamlessly interconnected

network of business across the globe, a network in which

business processes can be composed of building blocks built

by others. For the technology to fully deliver on this vision and

provide long-term value from the solutions that are being

built today, the assets and processes digitized must be able to

form the building blocks of future solutions. Future-proofing

investment in this way and enabling the network effects

promised by blockchain technology require seamless application

interoperability.

Smart contracts usually compose nicely but only on a

single blockchain. Thus one approach to interoperability is

technological alignment. If you consider blockchain analogous

to HTTP on TCP/IP and everything that runs on top as the

application layer, it is possible to imagine that the world may

align around one enterprise blockchain. If, however, you think

of a blockchain of anything higher level, like a database or

application server, that becomes unlikely. There are few high-

level standards that have truly universal adoption.

Thus the only realistic way to enable application interoperability

is to enable interoperability betweenblockchains and between

blockchains and other systems. There are currently three well-

understood approaches to this:

1. �Oracle systems, which also add interoperability

with external systems. These are effectively trusted

intermediaries that make external data available on a

blockchain.

2. �Mutual on-chain validation solutions like Cosmos’

Inter Blockchain Communication protocol rely on

implementing clients for blockchains on other

blockchains. That is, there would be a smart contract

on chain A that can validate that a certain action has

taken place on chain B, and vice versa. This allows for

data transfer between chains, but developers must

plan for interoperability when building the application

and must write code that specifically handles the

mechanics of interoperability throughout.

3. �Baselining or Pegging, where a central, often

public, blockchain is used to store only references

or cryptographic proofs. The Baseline Protocol and

Cosmos are projects that use this model, using public

chains as the center of a hub-and-spoke model,

respectively.

None of these three approaches offer real smart contract

interoperability across chains. A contract residing on chain

A cannot call a “method” on a contract residing on chain B.

Building applications that span chains takes a lot of skill, effort,

and overhead.

The Canton Protocol
All three approaches above are easily implemented in Daml.

In addition, second generation Daml Drivers use the Canton

protocol to reduce reliance on the underlying chain. This can

be thought of as running Daml as a Layer 2 protocol or doing

something akin to baselining but without the application-

specific architecture concerns. Not only are Canton-enabled

Daml Drivers able to provide full sub-transaction privacy

without trading off consistency, but they can also offer true

smart contract interoperability across networks.

WHY DAML 9

With the Canton protocol, a corresponding participant node

is able to connect to multiple Daml networks at the same

time, while still exposing a single Ledger API to the outside

world. Transactions are now able to span one or more Daml

networks, with contracts created in one network able to call

choices (Daml’s equivalent of methods) on contracts created

in a different network. From the Daml contract and client

application perspective, there is a single virtual ledger spanning

all connected networks. No special planning is required for

interoperability. A Daml application can be deployed not only

on any Daml-network thanks to portability, but actually across

multiple Canton-enabled networks at the same time, providing

unprecedented interoperability.

In short, Alice and Bob can trade cash for widgets without

changing their application even if the Bank and Factory do not

operate on the same networks.

Summary
To recap, what is Daml?

• �Daml is an open source technology that allows the

development and deployment of applications that cross

boundaries — organizational, legal, regulatory, etc.

• �Daml does so using a purpose-built smart contract

language, full-stack application and development

tooling, and drivers for blockchains, distributed ledgers,

and databases.

• �Daml solves many of the critical problems facing

enterprise blockchain. It:

• �Provides a high-level programming model for

distributed ledgers with the right abstractions for

business applications

• �Provides support across the entire solution and software

development lifecycle, not just for the low-level

blockchain/smart contract slice

• �Is platform-independent, removing lock-in and allowing

for cheap and fast go-to-market

• �Provides best-in-class privacy without compromising

integrity

• �Offers true smart contract interoperability between

different networks and deployment targets

If you want to learn more:

• �Learn Daml using interactive tutorials.

• �Install Daml and start developing.

• �Talk to us on the Daml forums.

• �Contact Digital Asset sales.

